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1. Introduction

Cryptography, from the Greek kryptós (meaning “hidden” or “se-
cret”) and graphein (meaning “to write”), is the study of communica-
tion techniques that permit two or more parties to securely transmit
information. The field of cryptography has evolved, from early sub-
stitution ciphers to the Enigma machine of World War II to today’s
digital communication.

A cryptographic scheme has three main goals: confidentiality, in-
tegrity, and authentication. The goal of confidentiality, first addressed
in a 1976 U.S. Air Force Study [BL76], states that only the intended
receiver should be able to read a message. The goal of integrity, formal-
ized by Clark and Wilson [CW87] in their paper comparing commercial
and military computer security policies, states that a message should
not be able to have been altered. The goal of authentication, which
has no known origin author and likely evolved over time, states that
the receiver of a message should know who sent it.

Many early schemes outlined in [LP87] such as the Caesar cipher, the
substitution cipher, and the Vigenère cipher, were easily decryptable,
meaning that someone other than the intended receiver could decipher
the messages. Thus, these ciphers lacked confidentiality. With the
one-time pad cipher, messages are encrypted using a pad the length
of the message, so it can only be deciphered and read by someone
who knows the exact pad used in the encryption. Thus, the one-time
pad introduced confidentiality, as discussed in [LP87]. However, since
the process required agents to generate keys the length of the message
that were only used once, it was time-consuming and computationally
expensive. During World War II, the German military used the Enigma
Machine to send encrypted messages that couldn’t be read by the Allies.
The Enigma Machine was finally cracked by Alan Turing and other
researchers. Their discovery was considered by many to be the most
important victory of the war. More recent work has been done, such as
that by Rejewski [Rej80] and Gillogly [Gil95], in analyzing and breaking
the Enigma cipher.

1



2 ANNIE BRYAN

Another major contribution to the field came in 1976, whenWhitfield
Diffie and Martin Hellman [DH76] published their paper introducing
Diffie-Hellman key exchange. One of the first public-key protocols,
Diffie-Hellman key exchange is a method of securely exchanging cryp-
tographic keys over a public or insecure channel. This was an improve-
ment over previous encrypted communication, which required sharing
keys by physical means or using a private channel. However, their
scheme didn’t authenticate either party, and thus it was subject to
man-in-the-middle attacks. A man-in-the-middle attack (see [Mal19])
is a cyberattack in which a malicious third party intercepts the network
between two communicating parties without their knowledge, and can
read and alter messages sent over the network.

In 1978, Ronald Rivest, Adi Shamir, and Leonard Adleman [RSA78]
published a public-key cryptosystem known as RSA, which I define
in Definition 9. Their protocol assures confidentiality, integrity, and
authentication, which I prove in Proposition 4.1.

Elliptic Curve Cryptography (ECC) was developed independently
by Miller [Mil86] in 1986 and Koblitz [Kob87] in 1987. ECC improves
upon RSA by having a smaller key. Thus, it is more efficient, yet
maintains the same level of encryption.

In Section 2, I present background information, some basic defini-
tions, and motivation. In Section 3, I define the Diffie-Hellman key
exchange protocol and illustrate the protocol with an example. In Sec-
tion 4, I present RSA public-key cryptography and give an example.
Finally, in Section 5, I describe Elliptic Curve Cryptography. In Sec-
tion 6, I conclude by describing some of the challenges that the field
of cryptography still faces today. Specifically, I will address quantum
computing, how it may render today’s cryptographic methods ineffec-
tive, and what post-quantum cryptography may look like.

2. Background

The primary motivating scenario for the cryptographic schemes in
this paper is a scenario with two agents, Alice and Bob1, who wish
to communicate over a channel. If this channel is insecure or public,
another (adversarial) agent Eve may be listening to messages sent on
the channel, and could potentially intercept them. To protect mes-
sages from being read by anyone other than the intended recipient, I
introduce the notion of symmetric key cryptography.

1The first mention of agents named Alice and Bob was in the 1978 paper by
Rivest, Shamir, and Adleman [RSA78], and became a common trope of the field
within a few years.
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Definition 1. Symmetric key cryptography, often called private-key
cryptography, consists of an encryption scheme E : K ×M → C and
a decryption scheme D : K × C → M , where M is a set of messages,
C is a set of ciphertexts, and K is a secret key that only the two
communicating parties know.

The security of any symmetric-key cryptosystem relies on the (lack
of) invertibility of EK . Namely, given EK , it must be hard to compute
DK , without knowledge of K.

The “hardness” of a problem refers to its computational hardness or
computational complexity, which is a measure of the amount of com-
puting resources required by an algorithm to solve a problem. The
three most important classes of complexity classes for motivating cryp-
tographic schemes are P, NP, and NP-Hard.

Definition 2. P (Polynomial time) is a complexity class that contains
all decision problems that can be solved in polynomial time with respect
to the size of the input.

Definition 3. NP (Non-deterministic Polynomial time) is a complex-
ity class that contains all decision problems that can be verified in
polynomial time.

Definition 4. NP-Hard is a complexity class that contains all decision
problems that are at least as hard as all problems in NP. In other words,
a problem H is NP-Hard if every problem in NP can be reduced to H
in polynomial time.

Such functions that are easy to calculate but hard to invert are known
as one-way functions.

Definition 5. [Matb] A function f is a one-way function if:

(1) The description of f is publicly known.
(2) Given x, it is easy to compute f(x).
(3) Given y in the range of f , there is no efficient algorithm to find

an x such that f(x) = y.

Example 1. Factorization problem: f(p, q) = pq for primes p, q.

Example 2. Discrete logarithm problem: f(p, g, x) = gx (mod p).

If one can prove that computing DK is sufficiently hard without
knowledge of K, then one has proved that the cryptosystem achieves
confidentiality. Conversely, if one can find an efficient algorithm for
computing DK or K given EK , then this is sufficient to show that the
cryptosystem lacks confidentiality and has been “broken”.
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One such encryption function that is easily invertible is the Caesar
cipher, which has an encryption function of

En(x) = (x+ n) (mod 26)

and a decryption function of

Dn(x) = (x− n) (mod 26).

Even without knowledge of the key n, one could decipher c := En(x)
by Algorithm 1, which has a time complexity of O(1). Since there are
a limited number of shifts, they can each be tested, one at a time. This
type of trial-and-error approach, in which an attacker systematically
iterates over all possible keys, is known as a brute-force attack.

Algorithm 1: Efficient decryption of the Caesar cipher

for 1 ≤ n′ ≤ 25 do
m′ ← (c− n′) (mod 26);
if m′ is a readable message then

return (n′,m′);
end

end

Another example of a brute-force attack is guessing a 4-digit code
(e.g. a bank account PIN or a phone password). Since there are 104 =
10, 000 possible values that the password could be, it would take the
attacker at most 10, 000 tries before guessing correctly. This is why
phones have a maximum number of tries before it will lock you out, or
require you to wait a few minutes before trying again.

3. Diffie-Hellman Key Exchange System

Suppose Alice and Bob want to communicate via some symmetric-
key cryptographic protocol. In order for Alice and Bob to agree on
a shared secret key K for encryption and decryption, they can either
share this key using physical means (as was the case until the 1970’s),
or they can use the Diffie-Hellman Key Exchange System to agree on
a key. Let p be a prime number and let g be an element of the finite
field GF (p).

Definition 6. [Mata] For a prime p, the finite field order p, denoted
GF (p), (often written Fp) is the field of residue classes modulo p, with
p elements {0, 1, . . . , p− 1}. Finite fields by definition satisfy the field
axioms :
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1. Associativity of addition (a+ b) + c = a+ (b+ c)
2. Commutativity of addition a+ b = b+ a
3. Additive identity a+ 0 = a
4. Additive inverses a+ (−a) = 0
5. Associativity of multiplication (ab)c = a(bc)
6. Commutativity of multiplication ab = ba
7. Multiplicative identity a(1) = a
8. Multiplicative inverse a(a−1) = 1 (for all a ̸= 0)
9. Distributivity a(b+ c) = ab+ ac

Example 3. For p = 3, the finite field order 3, GF (3) consists of the 3
elements {0, 1, 2}, which satisfy the additive and multiplicative tables
given in Table 1 and Table 2.

+ 0 1 2
0 0 + 0 (mod 3) = 0 0 + 1 (mod 3) = 1 0 + 2 (mod 3) = 2
1 1 + 0 (mod 3) = 1 1 + 1 (mod 3) = 2 1 + 2 (mod 3) = 0
2 2 + 0 (mod 3) = 2 2 + 1 (mod 3) = 0 2 + 2 (mod 3) = 1

Table 1. Additive table of the finite field GF (3)

× 0 1 2
0 0 × 0 (mod 3) = 0 0 × 1 (mod 3) = 0 0 × 2 (mod 3) = 0
1 1 × 0 (mod 3) = 0 1 × 1 (mod 3) = 1 1 × 2 (mod 3) = 2
2 2 × 0 (mod 3) = 0 2 × 1 (mod 3) = 2 2 × 2 (mod 3) = 1

Table 2. Multiplicative table of the finite field GF (3)
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Definition 7. The Diffie-Hellman Key Exchange System, a protocol
for securely exchanging a key over a public or insecure channel, is
defined as the following set of steps:

(1) Alice and Bob publicly agree on values of p and g.
(2) Alice picks a number a uniformly at random from {1, . . . , p−1}.
(3) Alice computes A = ga (mod p), which she sends to Bob.
(4) Bob picks a number b uniformly at random from {1, . . . , p−1}.
(5) Bob computes B = gb (mod p), which he sends to Alice.
(6) Alice computes KA = Ba (mod p).
(7) Bob computes KB = Ab (mod p).

Proposition 3.1. The Diffie-Hellman Key Exchange System yields the
same key for Alice and Bob (KA = KB).

Proof. Substituting the value Bob calculated in step (5) into the key
Alice calculated in step (6) yields

KA = Ba (mod p)

=
(
gb (mod p)

)a
(mod p)

= gab (mod p). (1)

Substituting the value Alice calculated in step (3) into the key Bob
calculated in step (7) yields

KB = Ab (mod p)

= (ga (mod p))b (mod p)

= gab (mod p). (2)

Since the values of (1) and (2) are the same, this concludes our
proof. □

Example 4. Let p = 83 and g = 7.
Suppose Alice chooses a = 15. She calculates A = 715 (mod 83) = 31.
Suppose Bob chooses b = 40. He calculates B = 740 (mod 83) = 12.
Given Bob’s value of B = 12, Alice calculates s = 1215 (mod 83) = 75.
Given Alice’s value of A = 31, Bob calculates s = 3140 (mod 83) = 75.

Proposition 3.2. The key K = KA = KB generated by the protocol
defined in Definition 7 cannot be easily calculated by anyone without
knowledge of a or b.

Proof. Consider an agent Eve who knows all publicly agreed-upon val-
ues (p, g) and all values sent over the network (A, B), but does not
know secret values generated by Alice and Bob (a, b). Currently,
there is no known way to compute K from A and B without first
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computing a or b. Thus, Eve must solve the discrete logarithm prob-
lem (Ex. 2), which is a trapdoor function, in order to compute K =
Blogg A (mod p) = Alogg B (mod p).

If the prime p is slightly less than 2c for some integer c, then ex-
ponentiation (calculating ga (mod p) or gb (mod p)) requires at most
2c multiplications, while taking a log (calculating logg A (mod p) or

logg B (mod p)) requires around p1/2 = 2c/2 operations. Thus, the
complexity of computing logarithms grows exponentially. This com-
pletes the proof. □

Although the Diffie-Hellman Key Exchange protocol allows Alice and
Bob to establish a secret shared key over a public channel, one draw-
back of the protocol is that it is subject to man-in-the-middle (MITM)
attacks. A MITM attack is a situation in which an adversarial agent
Eve is able to insert herself between Alice and Bob by hijacking their
connection and establishing her own independent connections with each
of them. Once this has been done, Eve can relay messages between
Alice and Bob, making it appear to them that they are communicat-
ing with each other. Since a symmetric-key protocol enabled by the
Diffie-Hellman Key Exchange Scheme does not authenticate the agent
sending the message, in the next section I will introduce public-key
cryptography and cryptographic signatures.

4. RSA Public Key Cryptography

Suppose Alice wants to sign a message m such that Bob can be
assured that it came from Alice. This introduces the idea of a cryp-
tographic signature, which cannot be forged, and thus guarantees that
the message came from a known sender. This introduced the notion of
a public-key cryptosystem.

Definition 8. Public key cryptography, often called asymmetric-key
cryptography, consists of an encryption scheme E : Ke ×M → C and
a decryption scheme D : Kd × C → M . The encryption key Ke is
public knowledge, while the decryption key Kd is known only to the
individual who owns the key. Each individual who wishes to receive
messages has their own private decryption key Kd and a corresponding
public encryption key Ke.

To implement signatures in a public-key cryptosystem such as RSA,
signatures must use one-way functions, also called trapdoor functions,
which are easy to compute in one direction, but nearly impossible to
invert. Let EA, DA, EB, and DB be the encryption and decryption
schemes for Alice and Bob, respectively. Recall that EA and DA are
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inverses, while EB and DB are inverses. Additionally, recall that EA

and EB are public information, while DA and DB are known only to
Alice and Bob, respectively.

Definition 9. I the RSA Public-Key Cryptography scheme [RSA78],
a protocol for signature generation and verification, as the following
set of steps:

(1) Alice computes s = DA(m).
(2) Alice computes c = EB(s).
(3) Alice sends c to Bob over an insecure channel.
(4) Bob computes s = DB(c).
(5) Bob computes m = EA(s).

Proposition 4.1. The protocol defined in Definition 9 ensures confi-
dentiality, integrity, and authentication.

Proof. I start with the value c sent over the public channel, where
c = EB(s) = EB(DA(m)) for some message m.

Bob is assured that the message came from Alice, since DA is private
to Alice, so she is the only one who can decrypt using DA. Therefore,
this protocol ensures authentication.

Bob is assured that the message has not been altered in any way since
Alice sent it, since to do so would require knowledge of DA. Therefore,
this protocol ensures integrity.

Bob obtains Alice’s original message, since EA(DB(c)) = EA(s) = m,
so this protocol ensures correctness.

The function DB is private to Bob, so he is the only one who can
read Alice’s message. Therefore, this protocol ensures confidentiality.
This completes the proof. □

The functions used in [RSA78] take advantage of the difficulty of the
factoring problem: given the product of two large primes n = p · q, find
p and q. Clearly, calculating n from p and q is easy. However, without
knowledge of p or q, deducing them given only n is much harder. The
specific encryption and decryption functions are defined as

C ≡ E(M) ≡M e (mod n), (3)

M ≡ D(C) ≡ Cd (mod n), (4)

where d is an integer which is relatively prime to Φ(n) = (p−1)(q−1)
and e is the multiplicative inverse of d, modulo (p− 1)(q − 1).

The fastest method of factoring integers under 100 decimal digits
is the Quadratic sieve algorithm, developed by Pomerance [Pom82] in
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1982. To factor an integer n, the Quadratic sieve algorithm runs in

e(1+o(1))
√
lnn ln lnn = Ln

[
1
2
, 1
]
.

Another method of factoring is Fermat’s factoring algorithm, devel-
oped by Pierre de Fermat and described by Lehman [Leh74] in 1974.
When the factors are of roughly similar size, Fermat’s factoring algo-
rithm is efficient.

5. Elliptic Curve Cryptography (ECC)

Elliptic Curve Cryptography (ECC) was developed independently
by Miller [Mil86] in 1986 and Koblitz [Kob87] in 1987. Its one-way
function is scalar multiplication of points about an elliptic curve.

Definition 10. An elliptic curve EF defined over a field F is the set
of solutions (x, y) ∈ F 2 to the equation

y2 = x3 + ax+ b (5)

for some constant values a, b ∈ F , such that the cubic on the right side
of the equation has no multiple roots.

Figure 1. An elliptic curve y2 = x3 − x+ 1

An example of such an elliptic curve with a = −1, b = 1 is denoted
in Figure 1. Note that an elliptic curve is symmetric about the x-axis.
Specifically, if (x1, y1) is a solution to Equation (5), then (x1,−y1) is a
solution as well.

Consider the following operations performed on points P1, P2 sat-
isfying Equation (5). An example is illustrated in Figure 2. Let
P1 = (x1, y1) and P2 = (x2, y2) with finite values x1, y1, x2, y2 such
that y1 ̸= −y2. Draw a line through P1 and P2 (if P1 = P2, draw the
line tangent to EF at P1). Let P3 = (x3, y3) be the negative of the
third point of intersection (x3,−y3) between the line and EF .

To compute P3, we need to find the line through P1 and P2, which is

y − y1 = m(x− x1),
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where

m =
y2 − y1
x2 − x1

is the slope of the line if P1 ̸= P2, and

m =
δEF

δx

∣∣∣∣
(x1,y1)

=
3x2

1 + a

2y1

is the slope of the tangent line at P1, which we use if P1 = P2.
To find the point of intersection between the curve EK and the line

between P1 and P2, we set them equal and solve for x and y, which
gives us:

x3 = −x1 − x2 +m2, y3 = −y1 +m(x1 − x3), (6)

Figure 2. An elliptic curve y2 = x3 − x+ 1 with
P1 = (−1.32471, 0), P2 = (0, 1),

P3 = (1.89456,−2.43017)

Using formulas (6), I will define f : F 2 × F 2 → F 2 as a function
that applies the above operation. Furthermore, I will define scalar
multiplication as the repeated application of f to a point. In other
words, to calculate kP for some integer k:

(1) Calculate 2P = Q1 = f(P, P )
(2) Calculate 3P = Q2 = f(P,Q1)
(3) Calculate 4P = Q3 = f(P,Q2)

...
(k − 1) Calculate kP = Qk−1 = f(P,Qk−2)

It is easy to compute kP given k and P , via repeated squaring. How-
ever, to compute k given P and kP , the näıve or brute-force solution
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would be to compute multiples of P until arriving at kP . In practice,
the value of k is typically 256 bits. Thus, a brute-force solution requires
repeating the above procedure at most 2256 times, which is infeasible
as it is extremely time-intensive. The basis of the security of ECC is
this trapdoor function known as the Elliptic Curve Discrete Logarithm
Problem.

Definition 11. Let E be an elliptic curve over the finite field GF (q),
where q = pn for prime p. The Elliptic Curve Discrete Logarithm
Problem (ECDLP) states: Given points P,Q ∈ E, find an integer k
such that Q = kP , if such k exists.

One algorithm that solves the ECDLP is Pollard’s rho algorithm,
developed by Pollard [Pol78] in 1978, which computes the index of any
integer relative to a given root of a prime p in O(

√
p) operations.

An improved algorithm is the Pohlig-Hellman algorithm, proposed
by Pohlig and Hellman [PH78] in 1978. In the general case, the Pohlig-
Hellman runs in O(

√
p), but improves in the case where p− 1 has only

small prime factors, in which it runs in O(log2(p)) complexity.
ECC is one of the most commonly used encryption standards on

the Internet today, especially in transactions of cryptocurrency such as
Bitcoin and Ethereum.

6. Challenges and Future Work

Quantum computing is a rapidly-emerging technology that relies on
quantum mechanics for computation. Regular computers encode data
in binary digits, or bits, that can take on a value of 0 or 1. By con-
trast, quantum computers use qubits, where a single qubit is able to
encode more than two states [Stu18]. Therefore, algorithms written for
quantum computers can run significantly faster than those written for
regular computers.

Today’s cryptographic techniques rely on one-way functions that
cannot be inverted. To iterate through all possible values, also known
as a brute-force solution, would take unreasonably long. However,
quantum computing would greatly speed this process up. Therefore,
today’s cryptographic techniques would be rendered essentially useless
by quantum computers.

While some researchers have made progress at building small-scale
quantum computers, many challenges still exist. It may take several
more years before quantum computers are able to scale to a size capable
of destroying our cryptographic schemes.
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